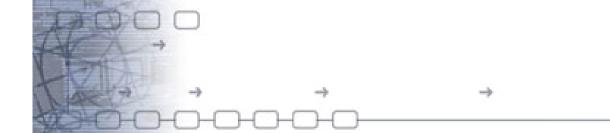


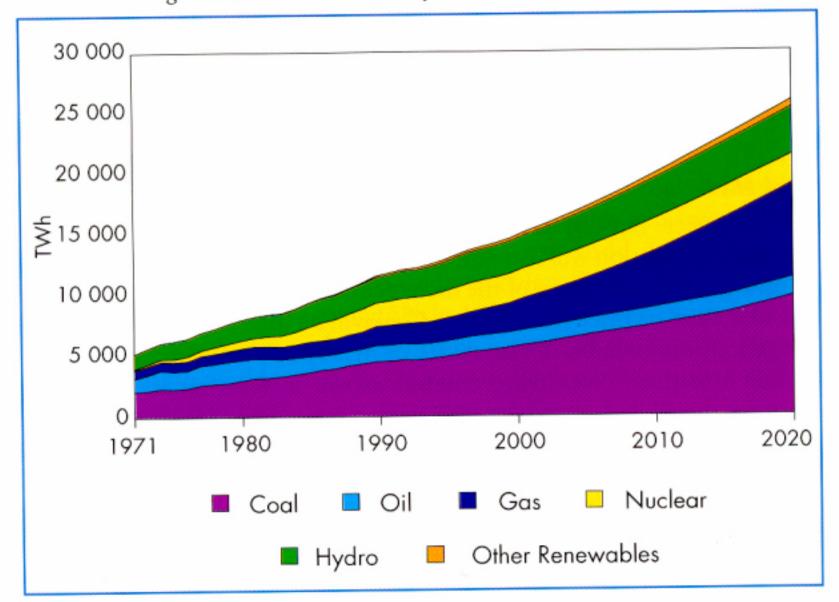
www.beaconsulting.com

January 2002


- 60 % of the greenhouse effect results from CO₂ emissions.
- CO₂ emissions represented 22500 Million tonnes in 1997.
- CO₂ emissions from electricity generation represented 7650 Million tonnes in 1997 i.e 34% of total emissions.

- Power sector CO₂ emissions are particularly important because :
 - electricity generation is expected to grow steadily in the coming decades (\cong 3% per year on overage \cong 5% in developing countries).
 - the power sector will probably become more dependent on fossil fuels.

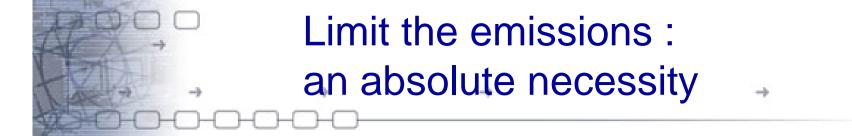
- CO₂ emissions in the Power Sector are highly dependent on the generation mode :
 - Coal : 920 kg/MWh
 - Oil : 683 kg/MWh
 - Gas : 452 kg/MWh
 - Nuclear : a few kg/MWh
 - Hydrolic : 0 kg/MWh



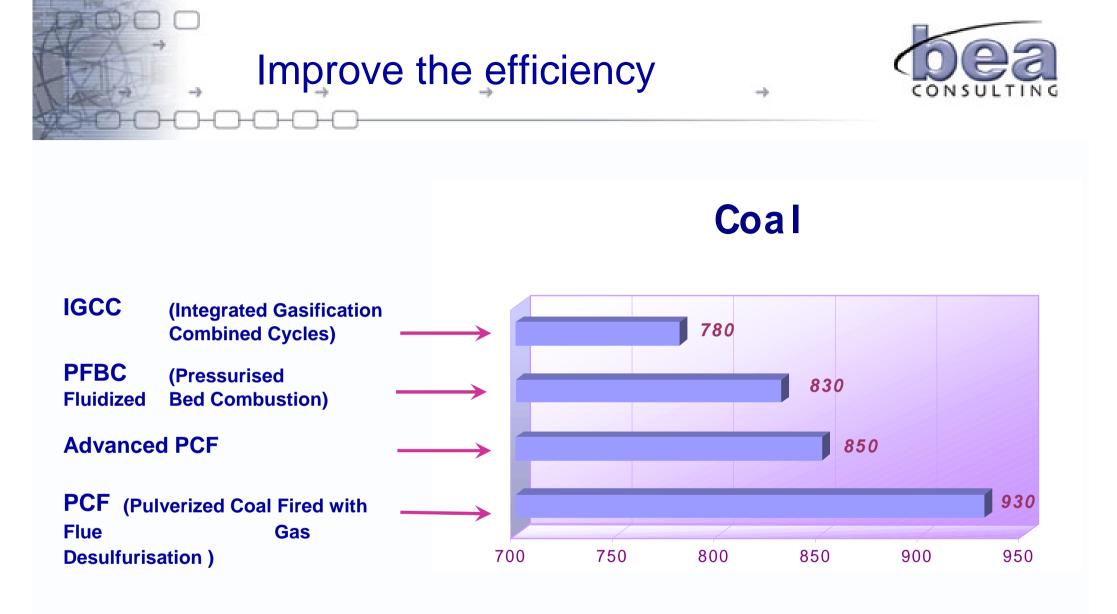
- However the selection of the generation mode is today based on considerations other than CO₂ emissions :
 - investment cost \Rightarrow gas- duration of construction \Rightarrow gas- availability of resources \Rightarrow coal- acceptance by public \Rightarrow nuclear
- CO₂ emissions are ignored because associated costs for the community are not internalized.

Figure 3.9: World Electricity Generation, 1971-2020

6


• According to the "Reference Scenario" of IEA

- annual global CO_2 emissions from electricity generation will increase by 76% between 1997 and 2020 and represent 37 % of the total CO_2 emissions in 2020 (13500 Mt i.e. more than 50% of the actual total emissions),
- more than 2/3 of incremental CO₂ emissions will be located in developing countries (China and India) notably due to growth in coal combustion.


- THESE FORECASTS ARE VERY FAR FROM THE OBJECTIVE OF STABILIZATION RESULTING FROM THE KYOTO PROTOCOL.
- THEY PUT THE COMING DECADES AT RISK.

IS IT POSSIBLE TO BE MORE AGRESSIVE ?.

- Improve the efficiency (producers and users),
- Switch to less carbon intensive fossil fuels,
- Develop fuel cells,
- Use renewable energies.

Average emissions in kg CO₂ / Mwh

- Maintaining coal-fired power plants at their 1977 level and substituting natural gas-fired generation to the new ones would reduce CO₂ emissions by about 10% in 2020 (1300 Million tons).
- The increase from 1997 to 2020 would remain close to 55 %.
- The dependency of electricity generation on natural gas would become very high (about 50%).

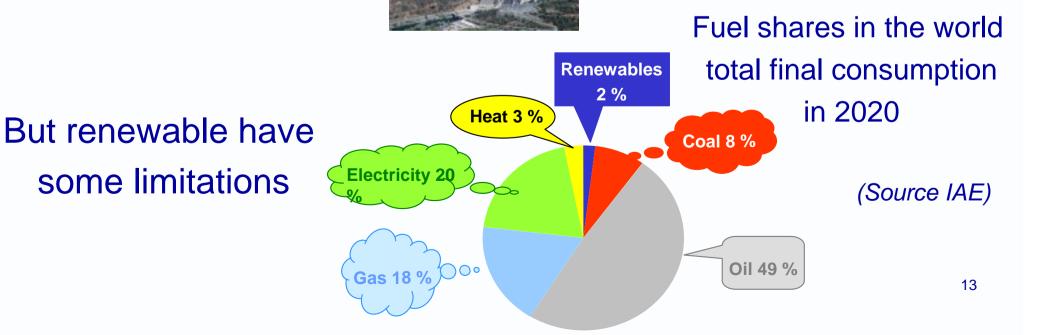
Develop fuel cells

Туре	System Power	gCO2 /kWh
Methane-fuelled PEM (Proton Exchange Membrane)	≅ 200 kW	535
SOFC (Solid Oxide Fuel Cell)	≅ 50 kW	400 - 440
SOFC + GT (Gas Turbine)	≅ 500 kW	280 - 305
Methanol - fuelled		
PEM(with reformer)	≅ 100 kW	≅ 7 00
DMFC (Diret Methanol Fuel Cell)	≅ 100 kW	600

NB : Fuel Cell / microturbine system on co-generation

$$PEM \cong 255 \text{ g CO}_2/kWh$$
$$SOFC \cong 235 \text{ g CO}_2/kWh$$

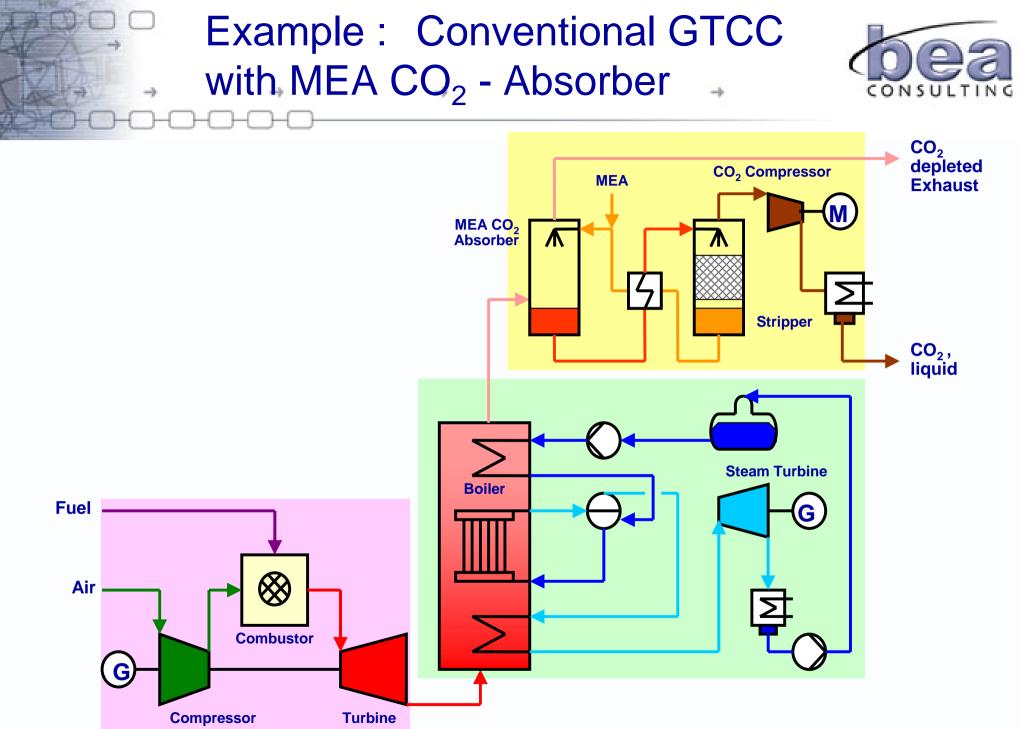
12


Use renewable energies

- Wind energy
- Solar Energy
- Hydro energy

- Limitation will not be sufficient in the long term.
- More drastic measures are required :
 - rehabilitation of nuclear energy
 - capture and storage of CO_2
- They have to be prepared now.

- By generating electricity with no CO₂ emissions, nuclear energy could contribute significantly to reducing greenhouse gas emissions.
- A 25% share of nuclear power of in the global electricity output (17% in 1997) would reduce CO₂ emissions by about 3000 Million tonnes in 2020 and more in the to follow decades.

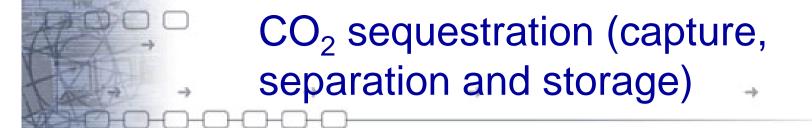

- This would imply :
 - a strong political involvement for restoring public confidence in this form of energy,
 - new developments aiming to develop smaller and safer reactors with an appropriate international control on proliferation.

However, nuclear energy cannot be the only solution to the CO_2 challenge.

- Capture and storage of CO₂ will become indispensable in the next decades.
- Various technologies are today under investigation
 - fuel decarbonisation prior to combustion,
 - "tail-end" capture solution (e.g. : amine scrubbing),
 - combustion in $O_2 / CO_2 / H_2O$ atmospheres
 - CO₂ cycles with cryo air separation
 - air turbines with integrated membranes.

CO₂ capture and storage

These technologies cannot be considered as mature :


- they significantly deteriorate the efficiency (up to 10 points),
- they increase the cost of electricity,
- they require a large investment effort.

CO₂ capture and storage costs

Costs	PCF (Pulverised Coal-Fired)	IGCC (Integrated Gasification- Combined Cycle)	NGCC (Natural Gas- Combined Cycle)
Cost increase of electricity generation (€ c/kWh)	≅ 2,5	≅ 3,1	≅ 1
Cost of CO_2 avoidance $(\notin t CO_2)$	50-75	45-60	35-55

Based on current technologies, the relative increase in the electricity cost would be between 20% to 90%.

- About 3000 GW of additional capacity will be built over the next 25 years, i.e. 120 GW per year.
- Assuming that 50% of the new fleet would be equipped with CO₂ capture systems, this would imply, under today's conditions, an additional investment of about 50 billion € per year.

 Such an investment justifies an R&D effort much higher than the current one. Opportunities for significant cost reductions exist since very little R&D has been devoted to CO₂ capture technologies.

The US DOE estimates that \$ 60 M per year for 10 years should be spent on R&D in CO_2 sequestration

- Nothing will happen if the players in the economy are not encouraged to be proactive.
- CO₂ is not a pollutant. Only excess of CO₂ may be hazardous. A lump-tax would do nothing except jeopardize the economic growth.
- More subtle mechanisms must be implemented :
 - CO₂ allowances trading associated with emission credits,
 - contractual commitments.

Infringements on the obligations should trigger sufficiently high penalties : 100 to 200 \in per ton of CO₂

- Power generation will be a major issue in the coming decade as regards CO₂ emissions.
- Conventional approaches will not suffice to stabilise emissions
- Faced with this issue, two routes of an order of magnitude apportioned to the challenge present themselves :
 - rehabilitation of nuclear power,
 - sequestration of CO_{2} .
- An appropriate economic framework must be created to allow the right decisions to be taken.

www.beaconsulting.com